-
详细信息
聚合物固化阻抗分析仪 材料/生物阻抗谱仪 阻抗分析仪在生物医学领域中的应用
1 生物组织阻抗特性的研究
生物组织的阻抗特性是一个重要的生物医学参数,它在疾病诊断、治疗效果监测和生物组织工程中具有广泛的应用。阻抗分析仪可以非侵入性地测量活体组织的阻抗变化,从而为临床诊断和治疗提供依据。
2 阻抗测量技术在疾病诊断中的应用
阻抗测量技术在生物医学领域的另一个重要应用是用于监测和评估心脏疾病。心脏组织和血液的阻抗特性变化可以反映出心脏功能的变化。
聚合物固化阻抗分析仪 材料/生物阻抗谱仪 温度和环境条件如何影响分析仪的阻抗测量?
请记住,阻抗是高度动态的,这一点至关重要。如下所述,温度、湿度和电磁干扰 (EMI) 等环境条件会严重影响测量结果:
温度:大多数电阻器、电感器和电容器都与温度有关。它们的温度系数是阻抗行为的关键因素。确保温度稳定,*好在受控的实验室环境中进行。如果在现场工作,应尽量减少暴露在温度骤变的环境中。
湿度:高湿度会导致冷凝,从而影响元件和电路的电气性能。使用除湿机确保低湿度环境。
电磁干扰:电磁干扰会影响阻抗测量,尤其是在半导体或高频应用等敏感设备中。在屏蔽环境中进行测量,以防止外部电磁场的影响。
测试条件的设置与数据分析囚的图形化方法
测试条件的精确设置以及数据分析的图形化方法对于从复杂的测试数据中提取有价值信息至关重要。本章将对如何设定测试条件提供详细指导,并探索如何利用图形化工具使数据分析过程更高效、直观。
1 测试条件的精确设置
测试条件的设置需依据具体的测试对象及其特性来调整,才能确保获得准确、可重复的测试结果。
1.1 根据样本特性调整测试条件
测试条件包括测试频率、电压或电流幅度、测试温度等,它们直接影响测试结果的准确度和可靠性。例如,针对不同的电池类型,其化学性质决定了必须选择*适宜的测试频率范围,以准确反映电池内部的电化学特性。此外,对材料进行测试时,样品的尺寸、形状和初始状态同样会对手段的测试条件产生影响。
执行步骤:
1.确定测试目标和样本特性。
2.根据样本特性选择合适的频率范围、电压和电流幅度。
阻抗分析仪在多个领域都有广泛应用。在电子电路设计与研发领域,工程师利用它测试电容、电感、电阻等元器件的性能参数,判断其是否符合设计要求,优化电路设计;在材料科学领域,可用于测量材料的介电常数、磁导率等电学和磁学特性,帮助研究人员了解材料的电学性能,开发新型电子材料;在生物医学工程领域,能通过测量生物组织的阻抗特性,辅助疾病诊断,如利用人体组织在健康和患病状态下阻抗的差异,实现早期疾病筛查;在电池研究中,阻抗分析仪可以评估电池的内阻、充放电性能等,为电池的研发和质量控制提供重要依据。
陶瓷介质损耗角正切及介电常数测试仪:它由稳压电源、高频信号发生器、定位电压表CBl、Q值电压表CB2、宽频低阻分压器以及标准可调电容器等组成(图2)。工作原理如下:高频信导发生器的输出信号,通过低阻抗耦合线圈将信号馈送至宽频低阻抗分压器。输出信号幅度的调节是通过控制振荡器的帘栅极电压来实现。当调节定位电压表CBl指在定位线上时,Ri两端得到约l0mV的电压(Vi)。当Vi调节在一定数值(10mV)后,可以使测量Vc的电压表CB2直接以Q值刻度,即可直接的读出Q值,而不必计算。另外,电路中采用宽频低阻分压器的原因是:如果直接测量Vi必须增加大量电子组件才能测量出高频低电压信号,成本较高。若使用宽频低阻分压器后则可用普通电压表达到同样的目的。
实验步骤
1、本仪器适用于110V/220V,50Hz交流电,使用前要检查电压情况,以保证测试条件的稳定。
2、开机预热15分钟,使仪器恢复正常状态后才能开始测试。
3、按部件标准制备好的测试样品,两面用特种铅笔或导电银浆涂覆,使样品两面都各自导电,但南面之间不能导通,备用。
4、选择适当的辅助线圈插入电感接线柱。根据需要选择振荡器频率,调节测试电路电容器使电路谐振。假定谐振时电容为C1,品质因素为Q1。
5、将被测样品接在Cx接线柱上。
6、再调节测试电路电容器使电路谐振,这时电容为C2,可以直接读出Q2。
7、用游标卡尺量出试样的直径Φ和厚度d(分别在不同位置测得两个数据,再取其平均值)。
主要参数:
- 准确度: Cx:±(读数×0.5%+0.5pF);tgδ:±(读数×0.5%+0.00005);
- 外施高压:3pF~1.5μF/10kV;60pF~30μF/0.5kV;
- *分辨率:*高0.001pF,4位有效数字;
- *介电常数ε准确度:0.5%
- *介质损耗tgδ测试范围:不限,
- *介质损耗tgδ分辨率:0.000001,电容、电感、电阻三种试品自动识别。
- *大输出电流:200mA;
- *升降压方式:电压随意设置。比如5123V。
- 试验频率: 40-70Hz单频随意设置。比如48.7Hz.
- 外施高压:接线时*大试验电流5A,工频或变频40-70Hz
- 测量时间:约30s,与测量方式有关;
- 测量电极直径与表面积: ¢50 mm(19.63cm2)
- 电极材料:不锈钢1Cr13Ni9Ti
- 电极工作面:精面面磨
- 电极间距:不大于5 mm
阻抗,作为电阻和电抗的复数,是一个动态且复杂的电气特性。在交流(AC)信号作用下,元件、电路或材料的阻抗会随频率变化而变化,这种变化不仅包括电阻,还包括电感、电容以及由此产生的电抗。为了更好地理解和分析这种动态特性,我们引入了“复阻抗”的概念。在二维复平面上,复阻抗可以用一个矢量来表示,该矢量包含实轴(电阻)和虚轴(电抗)两个分量。矢量的大小代表总阻抗,而方向则揭示了电压和电流之间的相位差。
阻抗分析仪正是用于测量这种复阻抗特性曲线的仪器。它能够在不同的频率范围内扫描并显示阻抗的变化情况,从而帮助工程师深入了解元件、电路或材料的电气特性。阻抗分析仪在电子和材料测试中有广泛的应用,包括电子学、电信、电力系统、航空航天以及汽车等多个行业。同时,它与LCR表等测量工具相比,具有更高的测量精度和更全面的信息展示能力。
频率范围:LCR表一般仅适用于较低频率的测量,而阻抗分析仪则能覆盖非常宽的频率范围。
功能:LCR表以其低成本和易用性受到欢迎,主要用于基本的固定频率阻抗测量。相比之下,阻抗分析仪功能更为全面,它不仅能测量各种阻抗参数,还支持共振分析和等效电路建模。
在选择合适的阻抗分析仪时,应考虑以下几个方面。
测量方法:根据阻抗和频率的预期测量范围选择测量方法。
电压电平控制:请记住,电容器的介电常数及其电容取决于交流电压电平。同样,电感器材料的电磁滞后也取决于交流电流电平。因此,一台好的分析仪至少必须具备电压电平监控功能。*好还能具备自动电平控制能力,以保持电压恒定。
测量精度:不同的分析仪及其设计具有不同的精度。根据所需的精度来决定分析仪。
所需的阻抗参数:根据要测量的参数选择仪器,如介电常数、磁导率、品质因数 (Q) 或耗散因子 (D)。
如何使用阻抗分析仪来测量电路中的复杂阻抗呢?
首先,我们需要了解电路块、印刷电路板及其组件的阻抗特性,这些特性会受到信号频率、电压、温度、湿度等因素的影响。因此,通过阻抗分析仪的测量,我们可以对每个电路块的阻抗行为进行建模,包括放大器子系统或滤波器子系统的输入和输出阻抗。
此外,寄生电容和电感的测量也是至关重要的。在实际工作条件下,这些参数会对PCB和元件的性能产生显著影响,特别是在敏感的射频电路中。因此,我们必须根据测量结果对寄生电容和电感进行建模。
另外,阻抗分析仪还广泛应用于测量印刷电路板和基板所用材料的介电常数。这些材料对电路性能和电磁干扰具有关键影响。通过阻抗分析仪的测量,我们可以了解材料在实际工作条件下的行为,从而优化电路设计。
1. 宽频率范围
覆盖从直流(DC)到射频(如120 MHz)甚至微波频段(部分型号达3GHz),支持低频电路、高频元件及材料介电特性的全频段分析。例如,Keysight E4990A支持20 Hz至120 MHz?,而Agilent 4294A可达110 MHz。
2. 高精度测量
采用自动平衡电桥技术和相敏检测算法,基本精度可达±0.08%(如Agilent 4294A),分辨率达10^-5(阻抗谱仪),可精准测量阻抗实部(R)、虚部(X)、相位角及等效电路参数(如Ls-Q、Cp-D)。
3. 多功能测试模式
扫描类型:支持线性/对数频率扫描、电压/电流偏置扫描及分段扫描。
分析功能:阻抗谱、导纳谱分析,并通过导纳圆图、对数曲线直观判断器件缺陷(如压电陶瓷分层)
扩展能力:集成温控单元(-160℃~400℃),支持多环境条件测试。
4. 图形化与自动化
结果以图表(如导纳圆图、阻抗模值曲线)显示,便于快速定位问题。
支持软件编程实现自动化测试,兼容工业检测系统。
5. 抗干扰与可靠性
通过校准补偿(如端口扩展误差消除)和抗噪声设计,确保恶劣环境下稳定运行?,部分型号内置40V直流偏置源。
6.典型应用场景
电子元器件:测试电容器、电感器、电阻器的阻抗特性。
生物医学:如HRA人体电阻抗评测分析仪用于健康检测。
材料研究:分析压电陶瓷、介电材料的频响特性。
7.与LCR测试仪的区别
频域能力:阻抗分析仪支持扫频和图形化显示,而LCR测试仪仅固定频率测量。
精度:两者接近,但阻抗分析仪在低频段精度更高
介电常数(阻抗分析仪)是各种电瓷、装置瓷、电容器等陶瓷,还有复合材料等的一项重要的物理性质,通过测定介质损耗角正切tanδ及介电常数(ε),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。介电常数测试仪(阻抗分析仪)器的基本原理是采用高频谐振法,并提供了通用、多用途、多量程的阻抗测试。仪器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。
阻抗分析仪是一种电子测试设备,用于评估材料、器件或系统的电气特性,尤其在宽频率范围内。它能精确测量电阻、电容、电感
等电气参数,及其随频率变化的行为。本文将详细探讨阻抗分析仪的工作原理、关键技术和广泛的应用领域。
1.阻抗概念及其在交流电路中的表现
在深入探讨阻抗分析仪之前,我们首先需要了解阻抗的基本概念及其在交流电路中的表现。阻抗是交流电路中的一种重要特性,它决定了
电路对电流流动的阻碍程度。阻抗的大小不仅受到电路元件a的电阻影响,还与电容和电感的特性有关。
阻抗的基本理解
阻抗(lmpedance)是由电阻(Resistance)、电感(Inductance)和电容(Capacitance)的复合作用产生的,表示为Z,并且是一个复数,其一般形式为Z=R +jX。其中R是电阻分量,代表电路对电流的阻碍程度;X是电抗分量,由电感和电容所引起,电感产生的电抗与
频率成正比,电容产生的电抗则与频率成反比。
阻抗在交流电路中的表现
在交流电路中,阻抗影响着电路的电流和电压之间的相位差。当电路中只有电阻时,电流和电压的相位是相同的。然而,一旦加入电感或
电容元件,电流和电压之间就会产生相位差,即电压可能会领先或落后电流90度。通过引入阻抗的复数形式,我们能更准确地分析交流电
路中电流和电压的相位关系。
阻抗分析的重要性
掌握阻抗的分析方法对设计和调试电子电路至关重要。阻抗匹配确保信号传输的效率,避免信号反射和衰减,从而改善电路的整体性
能。因此,阻抗分析仪在现代电子工程中扮演着不可或缺的角色,它为工程师们提供了一种有效工具来精确测量电路元件的阻抗特性。
在选择阻抗分析仪时,应考虑多个因素。
首先是测量方法,它决定了分析仪的阻抗和频率测量范围。其次,电压电平控制至关重要,因为电容器的介电常数和电感器材料的电磁滞后都受到交流电压和电流电平的影响。此外,测量精度也是选择分析仪的关键因素,不同的设计具有不同的精度水平。*后,根据要测量的参数,如介电常数、磁导率等,来选择合适的仪器。
同时,环境条件如温度、湿度和电磁干扰也会对分析仪的阻抗测量产生显著影响。因此,在选择和使用分析仪时,必须充分考虑这些动态因素。
阻抗分析在新材料研发中的作用
阻抗分析同样在新材料的研发中发挥着重要作用。在设计新型传感器或者电化学储能器件时,阻抗分析仪是评估候选材料性能的工具之
一。通过对材料阻抗特性的深入分析,研究人员可以快速筛选出具有*佳性能的材料,并对其工作机理进行深入的探索。
公司承诺:
1.购机前,我们专门派技术人员为您设计的流程和方案
2.购机后,将免费指派技术人员为您调试安装
3.整机保修一年,产品终身维护
4.常年供应设备的易损件及耗品确保仪器能长期使用
5、售后管理:我公司实现计算机化管理,实行客户定期电话回访制度,定期复查设备的工作情况,定期电话指导用户对设备进行保养和检测,以便设备正常运转,跟踪客户的设备使用情况,以便及时对设备进行维护
6、物流情况:及时提供货源,确保全国范围内2-10内到货,持续稳定地为代理商做全面服务工作,提供合理的运作空间。公司有的技术人员为您安装指导。
7、软件升级:终生免费提供新版本控制软件。
8、安装培训:仪器包装内附有说明书,培训人员为客户指定操作者讲解仪器正常操作流程、操作注意事项及仪器的日常维护要求;也可以根据客户要求提供上门培训服务。
-





